首页 > 正文

云南财经大学喻达磊学术教授

发布时间:2022-12-07文章来源: 浏览次数:


报告题目:Frequentist model averaging for Poisson and zero-inflated Poisson regression models

报告人:喻达磊教授

报告摘要:This paper considers frequentist model averaging for estimating the unknown parameters in that have received widespread attention in many applications, the Poisson and zero-inflated Poisson regression models. In Poisson regression model, we propose a weight choice method based on the minimisation of an unbiased estimator of an expected Kullback-Leibler-type loss function. For its zero-inflated counterpart, our proposed weight choice procedure is based on the minimisation of an unbiased estimator of a conditional quadratic loss function. We prove that the resulting model average estimators enjoy optimal asymptotic properties and improved finite sample properties over a range of model selection estimators. Our proposed methods are illustrated by two real data examples.

报告时间:128日(周四)下午16:10—17:10

报告地点:腾讯会议562-346-020

报告人简介:喻达磊,博士(香港城市大学),云南财经大学教授,博士生导师。研究领域为随机效应模型、混合模型以及空间计量模型的模型选择、模型平均和估计理论等。已在包括JRSS-B,JASA,JBES和中国科学:数学在内的国内外统计学期刊上发表论文十余篇。主持国家自然科学基金项目三项,入选了云南省中青年学术和技术带头人后备人才和云南省“万人计划”的“青年拔尖人才”专项。


关闭 打印责任编辑:李宴美

友情链接